Kamis, 29 September 2016

Komponen komponen Pesawat Terbang

komponen pesawat terbang

Sayap

Sebuah pesawat terbang memberikan gaya angkat yang dibutuhkan untuk terbang. Gaya angkat terjadi oleh aliran udara dari bagian depan di sekitar sayap. Kuncinya terletak pada bentuk dari sayap: yang melengkung pada bagian atas dan relatif rata pada bagian bawah. Ini artinya aliran udara yang melintas pada bagian atas berbeda dengan bagian bawah dari sayap. Saat udara menerpa bagian atas sayap, menyebabkan aliran melintas menjauhi sayap.Karena bentuk lengkungan pada sayap pada bagian atas menyebabkan daerah tekanan rendah tercipta. Perbedaan tekanan bagian atas dan bagian bawah akan menciptakan gaya angkat pada sayap.

Mesin jet

Untuk bergerak ke depan melintasi udara pesawat terbang menggunakan daya dorong yang dihasilkan mesin. Hampir semua pesawat terbang komersial menggunakan mesin jet yang biasa disebut turbofans. Turbofans adalah salah satu dari keluarga mesin yang disebut mesin turbin gas.

Udara dingin dimasukkan pada bagian depan dengan menggunakan sudut-sudut besar (biasanya berdiameter lebih dari 3 meter). Udara yang dimasukkan ke dalam mesin dan menekan ke luar dengan menghasilkan gaya dorong.

Udara mengalir melalui sudut-sudut pada mesin yang biasa disebut kompresor.Kompresor menekan udara dan mengalir ke ruang pembakaran dengan menaikan tekanannya terlebih dahulu.Di dalam ruang pembakaran, udara dicampur dengan bahan bakar kemudian dibakar menyebabkan letupan yang terkendali.Panas yang terjadi pada ruang pembakaran menyebabkan adanya ekspansi termal yang sangat cepat dan keluar ke bagian belakang mesin. Saat keluar dari ruang pembakaran udara panas melintasi turbin menghasilkan gaya dorong. Turbin yang terhubung akan berputar agar kompresor dapat bekerja memasukkan udara dingin pada bagian depan, sehingga proses tersebut dapat dilakukan berulang-ulang secara terus-menerus.

Pengendali

Pada saat terbang pilot harus mengubah bentuk sayap agar pesawat dapat dikendalikan. Untuk melakukan ini dia memakai bagian sayap yang dapat digerakan yang biasa disebut permukaan kontrol. Ini akan mengubah pergerakan udara yang melintas pada permukaan sayap dan juga mengubah arah penerbangan.

Untuk melakukan gerakan ke turun atau naik, tuas pilot menggerakkan panel pada bagian ekor yang biasa disebut elevator. Jika tuas pilot digerakkan ke belakang maka panel pada bagian depan elevator akan naik dan menyebabkan aliran udara menekan bagian ekor ke atas sehingga pesawat akan naik. Jika tuas pilot digerakkan ke depan maka panel pada bagian depan elevator akan turun dan menyebabkan aliran udara menekan bagian ekor ke bawah sehingga pesawat akan turun.

Untuk menggerakkan pesawat agar pesawat miring terhadap permukaan bumi, pilot menggerakkan panel pada bagian ujung dari sayap yang disebut aileron. Untuk tuas pilot ke kiri akan menggerakkan aileron bagian kiri ke atas akan menyebabkan sayap sebelah kiri turun. Pada saat yang sama, aileron pada sayap kanan bergerak ke bawah menyebabkan sayap sebelah kanan ke atas. Kombinasi dua gaya akan menyebabkan gerakan bidang pesawat miring terhadap permukaan bumi. Demikian pula, untuk kasus tuas pilot digerakkan ke kanan akan meggerakkan pesawat miring ke kanan terhadap permukaan bumi.

Saat membelok, pilot juga menggunakan stabiliser vertikal pada bagian ekor pesawat.Saat belok ke kiri, stabiliser bergerak ke kiri.Bagian ekor ini berbentuk seperti sebuah sayap terletak pada vertikal terhadap bidang pesawat, yang dapat digerakan ke kanan dan ke kiri.Sehingga dapat membantu pembelokan pesawat ke kanan dan ke kiri.

Saat melakukan lepas landas bagian flaps membuat daerah permukaan sayap lebh besar dan lebih lengkung, sehingga memberikan daya angkat lebih pada sayap.

Stabilitas pesawat

Stabilitas pesawat atau model adalah kemampuan untuk kembali ke posisi tertentu dalam suatu penerbangan (setelah mendapat gangguan atau kondisi yang tidak normal). Pesawat atau model dapat menjadi stabil dalam keadaan tertentu dan tidak karena kondisi lainnya. Sebagai contoh suatu pesawat dapat stabil dalam keadaan terbang normal, tetapi menjadi tidak stabil dalam keadaan posisi terbang terbalik, demikian sebaliknya.

Seringkali terjadi kerancuan antara stabilitas dengan keseimbangan atau trim. Pengujian keseimbangan dan trim dilakukan agar pesawat dapat mencapai kondisi yang stabil yang berhubungan erat dengan faktor keselamatan.

Keseimbangan adalah hal yang paling penting, dan harus yang diperiksa pertama kali. Untuk model yang telah dipublikasikan atau model yang telah dijual dalam bentuk kit, biasanya titik keseimbangan ini diberi tanda dengan CG (Centre of Gravity).

Cara yang paling mudah dan umum dilakukan untuk menguji keseimbangan adalah dengan memberi tanda pada bagian bawah kedua ujung sayap yang segaris dengan titik berat juga pada bagian depan dan belakang dari badan pesawat, kemudian angkat pesawat pada titik-titik tersebut dengan ujung jari. Apabila keseimbangan model berada pada posisi Horizontal, berarti titik keseimbangannya benar. Apa bila tidak, maka harus ditambahkan beban atau yang populer dengan Ballast di bagian depan atau ekor suatu model.

Hal ini memiliki akurasi yang baik untuk berbagai tujuan, khususnya untuk model yang memiliki karateristik perbedaan yang kecil dalam keseimbangan dan tidak merupakan hal yang kritis serta memiliki kondisi stabilitas yang dapat diatur. Untuk model yang memiliki ukuran yang lebih besar dan kebutuhan keseimbangan yang tinggi, hal tersebut tidak dapat diterapkan.

Perlu diingat juga bahwa pengujian keseimbangan harus dilakukan untuk model dalam keadaan lengkap (semua bagian terpasang) dan siap terbang, walaupun bahan bakar tidak termasuk yang dihitung dalam model yang menggunakan mesin. Paling tidak keadaan ini memenuhi persyaratan dan memberikan gambaran seutuhnya mengenai keseimbangan.

Umumnya model yang telah dibuat, posisi sayap dan horizontal stabilizer harus dicek. Saat ini kebanyakan model menggunakan pandangan untuk menentukan apakah posisi sayap dan stabilo membentuk sudut siku dengan badan pesawat, dianjurkan untuk menggunakan peralatan sebenarnya yang presisi dalam menentukan posisi tersebut.

Sebagai contoh dapat digunakan jarum pentul dan benang. Jarum tersebut diletakkan di bagian depan dan belakang. Kemudian ditarik benang dari pin bagian depan ke ujung kanan dan kiri stabilo. Untuk sayap, ditarik benang dari pin belakang ke ujung sayap kiri dan kanan.

Melihat dari pesawat bagian belakang juga salah satu cara yang cukup efektif untuk menguji keseluruhan proses .Untuk memperbaiki kesalahan dalam apabila posisi sayap, badan dan bagian ekor tidak benar, maka yang pertama kali yang dilakukan cari yang salah. Pada kenyataannya apa bila terjadi kesalahan kecil pada sayap terhadap badan maka hal yang termudah adalah menyesuaikan posisi stabilo.

Pengujian terbang dan trim dilakukan agar suatu model dapat terbang mulus dan aman. Penyesuaian yang baik dari seluruh komponen pesawat di gunakan untuk mencapai hasil yang terbaik dari kinerja pesawat model, khususnya model yang dirancang untuk berprestasi tinggi. Hal ini membutuhkan perhatian khusus, pengalaman yang baik dan know-how tentang model yang dibuat.

Aerodinamika

Pada prinsipnya, pada saat pesawat mengudara, terdapat 4 gaya utama yang bekerja pada pesawat, yakni gaya dorong (thrust T), hambat (drag D), angkat (lift L), dan berat pesawat (weight W). Pada saat pesawat sedang menjelajah (cruise) pada kecepatan dan ketinggian konstan, ke-4 gaya tersebut berada dalam kesetimbangan: T  D  dan L = W. Sedangkan pada saat pesawat lepas landas dan mendarat, terjadi akselerasi dan deselerasi yang dapat dijelaskan menggunakan Hukum II Newton (total gaya adalah sama dengan massa dikalikan dengan percepatan).

Pada saat take off, pesawat mengalami akselerasi dalam arah horizontal dan vertikal. Pada saat ini, L harus lebih besar dari W, demikian juga T lebih besar dari D. Dengan demikian diperlukan daya mesin yang besar pada saat lepas landas. Gagal lepas landas bisa disebabkan karena kurangnya daya mesin (karena berbagai hal: kerusakan mekanik, human error, gangguan eksternal, dan sebagainya), atau gangguan pada sistem kontrol pesawat.

Lapisan Atmosfer

Atmosfer adalah lapisan gas yang melingkupi sebuah planet, termasuk bumi, dari permukaan planet tersebut sampai jauh di luar angkasa. Di Bumi, atmosfer terdapat dari ketinggian 0 km di atas permukaan tanah, sampai dengan sekitar 560 km dari atas permukaan Bumi. Atmosfer tersusun atas beberapa lapisan, yang dinamai menurut fenomena yang terjadi di lapisan tersebut. Transisi antara lapisan yang satu dengan yang lain berlangsung bertahap. Studi tentang atmosfer mula-mula dilakukan untuk memecahkan masalah cuaca, fenomena pembiasan sinar matahari saat terbit dan tenggelam, serta kelap-kelipnya bintang. Dengan peralatan yang sensitif yang dipasang di wahana luar angkasa, kita dapat memperoleh pemahaman yang lebih baik tentang atmosfer berikut fenomena-fenomena yang terjadi di dalamnya.

Atmosfer Bumi terdiri atas nitrogen (78.17%) dan oksigen (20.97%), dengan sedikit argon (0.9%), karbondioksida (variabel, tetapi sekitar 0.0357%), uap air, dan gas lainnya. Atmosfer melindungi kehidupan di bumi dengan menyerap radiasi sinar ultraviolet dari matahari dan mengurangi suhu ekstrem di antara siang dan malam. 75% dari atmosfer ada dalam 10 sampai 11 km dari permukaan planet.

Atmosfer tidak mempunyai batas mendadak, tetapi agak menipis lambat laun dengan menambah ketinggian, tidak ada batas pasti antara atmosfer dan angkasa luar.

Pesawat terbang komersial terbesar

Pesawat komersial Airbus A380

Airbus A380 merupakan pesawat terbang komersial yang diproduksi oleh perusahaan Airbus S.A.S. Pesawat ini adalah pesawat terbang komersial yang memiliki dua tingkat dan empat mesin. Pesawat ini dirancang untuk mengangkut penumpang sebanyak 850 penumpang dengan satu kelas penerbangan atau 555 penumpang dengan tiga kelas penerbangan.

Pesawat terbang komersial jenis Airbus A380 ini melaksanakan penerbangan perdana pada 27 April 2005 dan menjalanai penerbangan komersial perdana pada akhir 2007. Pesawat terbang komersial ini merupakan pesawat penumpang terbesar yang pernah dibuat dan mendapat julukan Superjumbo.

Airbus A380 memiliki empat mesin buatan Rolls-Royce Trent-900. Mesin ini dapat menghasilkan daya dorong sebesar 36.280 kg. Peluncuran pesawat terbang komersial ini pertama kali dilakukan pada Januari 2005. Airbus A380 ini melaksanakan penerbangan pertamannya dari Blagnac Toulouse Internasional Airport, Toulouse, Prancis, dan mendarat kembali di bandara yang sama.

Fasilitas

Perusahaan Airbus dan maskapai yang ingin menggunakan pesawat terbang komersial A380 ini menekankan pada kemampuan pesawat dengan meningkatkan kenyamanan penumpang. Misalnya, kabin yang lebih luas dan berbagai macam fasilitas pendukung lain, seperti bar, toko-toko. Bahkan, kasino seperti yang yang diumumkan oleh maskapai Virgin Atlantic.

Banyak opini publik yang menyatakan kekagumannnya pada Airbus A380 saat pertama kali diluncurkan. Kekaguman itu berdasar pada besarnya kapasitas dan fasilitas yang ditawarkan Airbus A380. Akan tetapi, banyak juga yang mencemaskan akan terjadi kepadatan di bandara jika penumpangnya semakin banyak karena bagasi yang dibawanya pun akan semakin banyak.

Pemesanan

Saat ini, sudah sekitar 15 maskapai penerbangan yang memesan pesawat terbang komersial jenis A380 ini. Pemesanan pesawat ini pun sudah mencapai 154 order. Pemesanan tertinggi dilakukan oleh maskapai Emirates yang mencapai 41 pemesanan. Maskapai lain yang memesan Airbus A380 adalah Qantas, Singapore Airline, Air France, China Southern Airlines, dan Malaysia Airlines. Perusahaan Airbus pun menawarkan pesawat komersial jenis A380 ini kepada Garuda Indonesia Airlines. Akan tetapi, pihak Garuda Indonesia Airlines masih mengkaji penawaran tersebut, mengingat kebutuhan Maskapai Garuda Indonesia akan pesawat besar dalam melayani penerbangan jamaah haji.

Maskapai di dunia yang pertama kali menggunakan jasa Airbus A380 ini adalah maskapai Singapore Airlines. Maskapai ini mengklaim sebagi maskapi pertama yang menggunakan A380 untuk rute London Sydney pada akhir 2007.

Spesifikasi pesawat

Pesawat terbang komersial ini memiliki panjang 73m dan tinggi 79,8m. Berat kosong pesawat ini sekitar 280.000 kg dan berat maksimum untuk lepas landas sebesar 560.000 kg.

Rabu, 28 September 2016

Mengenal Pesawat Terbang

Pesawat terbang adalah pesawat udara yang lebih berat dari udara, bersayap tetap, dan dapat terbang dengan tenaga sendiri[1]. Secara umum istilah pesawat terbang sering juga disebut dengan pesawat udara atau kapal terbang atau cukup pesawat dengan tujuan pendefenisian yang sama sebagai kendaraan yang mampu terbang di atmosfer atau udara. Namun dalam dunia penerbangan, istilah pesawat terbang berbeda dengan pesawat udara, istilah pesawat udara jauh lebih luas pengertiannya karena telah mencakup pesawat terbang dan helikopter.

Sejarah

Pesawat terbang yang lebih berat dari udara ini diterbangkan pertama kali oleh Wright Bersaudara (Orville Wright dan Wilbur Wright) dengan menggunakan pesawat rancangan sendiri yang dinamakan Flyer yang diluncurkan pada tahun 1903 di sekitar Amerika Serikat. Selain Wright bersaudara, tercatat beberapa penemu pesawat lain yang menemukan pesawat terbang antara lain Samuel F Cody yang melakukan aksinya di lapangan Farnborough, Inggris tahun 1910. Sedangkan untuk pesawat yang lebih ringan dari udara sudah terbang jauh sebelumnya. Penerbangan pertama kalinya dengan menggunakan balon udara panas yang ditemukan seorang berkebangsaaan Perancis bernama Joseph Montgolfier dan Etiene Montgolfier terjadi pada tahun 1782, kemudian disempurnakan seorang Jerman yang bernama Ferdinand von Zeppelin dengan memodifikasi balon berbentuk cerutu yang digunakan untuk membawa penumpang dan barang pada tahun 1900. Pada tahun tahun berikutnya balon Zeppelin mengusai pengangkutan udara sampai musibah kapal Zeppelin pada perjalanan trans-Atlantik di New Jersey 1936 yang menandai berakhirnya era Zeppelin meskipun masih dipakai menjelang Perang Dunia II. Setelah zaman Wright, pesawat terbang banyak mengalami modifikasi baik dari rancang bangun, bentuk dan mesin pesawat untuk memenuhi kebutuhan transportasi udara.Pesawat komersial yang lebih besar dibuat pada tahun 1949 bernama Bristol Brabazon.Sampai sekarang pesawat penumpang terbesar di dunia di buat oleh airbus industrie dari eropa dengan pesawat A380.

Deskripsi

Di Amerika Serikat, Penerbangan pesawat pertama kali dilakukan oleh Wright bersaudara pada 1903. Mereka merancang pesawatnya sendiri. Pesawat ini hanya cukup untuk satu orang.

Di Inggris, seorang penemu pesawat terbang bernama Samuel F. Cody berhasil melakukan penerbangan pada 1910. Waktu itu, bentuk pesawat yang diciptakan masih sangat sederhana. belum seperti yang bisa dinikmati saat ini.

Setelah Perang Dunia I, masa penerbangan sipil mulai tumbuh dan mengalami perkembangan cepat. Akhirnya banyak pesawat yang diproduksi untuk transportasi sipil. Selain itu, mulai juga bermunculan perusahaan penerbangan di Eropa dan Amerika.

Seiring perkembangan zaman, bentuk dan mesin pesawat terbang mulai disempurnakan. Hal ini dilakukan untuk memenuhi kebutuhan transportasi udara. Pada 1949, dibuatlah pesawat komersial. Pesawat ini ukurannya lebih besar daripada pesawat-pesawat sebelumnya.

Sistem dalam pesawat terbang

Pesawat terbang adalah sistem yang kompleks. Pada tahap desain dan dalam manual penerbangan dan pemeliharaan (digunakan oleh teknisi pilot dan pemeliharaan) itu terbagi menjadi sistem sederhana yang melaksanakan fungsinya masing-masing.

Berikut ini adalah beberapa sistem dalam pesawat terbang :

Electrical Sistem
Hydraulics system
Navigation system
Flight control system
Ice protection (antiicing and deicing) system
Cooling system

Klasifikasi pesawat terbang

Pesawat terbang adalah pesawat udara yang lebih berat dari udara, bersayap tetap, dan dapat terbang dengan tenaga sendiri. Secara umum istilah pesawat terbang sering juga disebut dengan pesawat udara atau kapal terbang atau cukup pesawat dengan tujuan pendefenisian yang sama sebagai kendaraan yang mampu terbang di atmosfer atau udara. Namun dalam dunia penerbangan, istilah pesawat terbang berbeda dengan pesawat udara, istilah pesawat udara jauh lebih luas pengertiannya karena telah mencakup pesawat terbang dan helikopter.

Ada dua klasifiksai pesawat terbang. Pertama, pesawat yang lebih berat daripada udara (aerodin). Pesawat yang termasuk jenis ini, yaitu autogiro, helikopter, dan pesawat bersayap tetap. Kedua, pesawat yang lebih ringan daripada udara (aerostat). Pesawat yang termasuk dalam jenis ini di antaranya kapal udara.

Pesawat eksperimental

Pesawat ini merupakan pesawat yang sedang mengalami proses pengujian. Pesawat jenis ini pada umumnya mempunyai bentuk sedikit berbeda dan istimewa. Konsep dan desainnya baru. Selain itu, pesawat ini belum dipakai secara massal.

Pesawat penumpang sipil

Pesawat jenis ini merupakan pesawat udara yang berfungsi mengangkut penumpang. Pesawat penumpang sipil ini mempunyai kapasitas yang berbeda-beda.

Pesawat angkut

Pesawat ini berfungsi untuk mengangkut barang dan mengangkut berbagai jenis komoditi. Pesawat ini sering juga disebut pesawat kargo. Pada umumnya pesawat kargo adalah pesawat penumpang yang dimodifiksai. Tapi, ada juga pesawat yang khusus dibuat untuk pengangkutan barang, misalnya pesawat jenis Boeing 747 Large Cargo Freighter.

Pesawat angkut biasanya dipakai oleh sipil dan militer. Keduanya mempunyai armada masing-masing. Pihak militer biasanya menggunakan pesawat ini untuk mengangkut kendaraan perang, senjata, dan tentara.

Pesawat militer

Pesawat militer merupakan pesawat yang berfungsi untuk berbagai keperluan militer. Jenisnya pun bermacam-macam.

Pesawat tempur

Pesawat ini didesain untuk melakukan penyerangan. Sasaran penyerangan biasanya adalah pesawat musuh. Karakter pesawat ini lincah dan cepat.
Pesawat tempur latih
Pesawat ini digunakan latihan oleh calon-calon pilot, baik sipil ataupun militer. Pesawat ini dirancang tidak bersenjata. Pesawat jenis ini mempunyai dua tempat duduk, yaitu untuk pilot dan co-pilot.

Pesawat intai

Pesawat ini berfungsi untuk mengintai lawan dan mengumpulkan data-data intelijen.

Pesawat terbang mempunyai bahan bakar khusus, akan tetapi selidik punya selidik pesawat menggunakan dua jenis bahan bakar yaitu Avgas dan aviation kerosine. Seperti juga mobil, pesawat terbang butuh bahan bakar. Energi yang dilepas dipakai untuk menggenjot piston dan turbin agar kendaraan tersebut bisa melaju. Jika pesawat bermesin piston menggunakan aviation gasoline alias avgas, sedangkan pesawat penyandang mesin turbin menggunakan aviation kerosine.

Beda dari kedua jenis bahan bakar ternyata ada pada sifat titik didih. Avgas yang sejatinya adalah campuran minyak tanah dengan hidrokarbon cair berkisar antara 32-220 Celcius. Sementara aviation kerosine lebih tinggi, yakni antara 144-252 Celcius.

Pembedaan ini paling tidak muncul sebagai syarat baku lantaran metal ruang bakar mesin punya toleransi beragam terhadap panas hasil pembakaran. Mesin piston, sebagaimana laiknya dapur pacu generasi awal, jauh lebih rentan ketimbang mesin turbin yang terbuat dari metal jenis terbaru. Itu sebab, mesin pesawat DC-3 Dakota yang walau hingga kini masih terbang, misalnya, tetap tak bisa beranjak dari avgas.

Jadi, jika penerbangan jarak jauh ingin dipersingkat, pesawat terbang tak bisa lagi tergantung pada mesin piston. Pemecahannya mau tak mau dengan mesin turbin (turbojet, turbofan, atau turboshaft), yang pada akhirnya menuntut jenis bahan bakar lain yang lebih berenergi. Maka diramulah aviation kerosine.

Namun, sejalan dengan semakin canggihnya mesin turbin itu sendiri, aviation kerosine mengalami beberapa perombakan. Jenis pertama, Jet A, misalnya, hanya cocok digunakan untuk mesin jet generasi awal dengan struktur mesin yang masih sederhana.

Namun, apa boleh buat, avgas semakin ketinggalan zaman karena tak mampu memacu pesawat menerobos batas kecepatan subsonik. Mirip seperti yang dipertentangkan antara mobil rumahan dan mobil balap, yang terakhir ini tentu perlu bahan bakar khusus yang mampu menimbulkan panas lebih tinggi.

Mengetahui Instrument Pesawat Terbang

Instrument-Instrument Pesawat Terbang


1. Persyaratan Instrument Pesawat Terbang

Instrument - instrument yang digunakan di pesawat terbang haruslah alat-alat yang bermutu tinggi, karena keselamatan penerbang, awak penerbang (air crew), penumpang dan pesawatnya sendiri, seluruhnya tergantung pada ketelitian (accurancy), dan fungsi yang tepat ada beberapa persyaratan minimum harus dipenuhi oleh sebuah instrument pesawat terbang.

2. Klasifikasi Instrument

Sebagian besar instrument-instrument yang kita dapati dicockpit pesawat umumnya dibagi atas 4 golongan :

A. FLIGHT INSTRUMENT

1. Air Speed Indicator
Instrumen ini berfungsi untuk mengetahui kecepatan pesawat relatif terhadap tekanan udara di sekelilingnya atau terhadap tekanan udara statis.

2. Altimeter
Instrumen ini berfungsi untuk mengetahun ketinggian pesawat terhadap Sea Level atau permukaan laut.

3. Vertical Speed Indicator
Instrumen ini berfungsi untuk mengetahui kecepatan pesawat pada saat Climb dan Descent atau menanjak dan menukik.

4. Turn and Bank Indicator
Instrumen ini berfungsi untuk mengetahui posisi belok dari pesawat.

5. Artificial Horizon
Instrumen ini berfungsi untuk mengetahui posisi pesawat pada saat terbang.

B. Engine Instrument

1. Engine Speed Indicator
Instrumen ini berfungsi untuk menegetahui putaran dari N1 maupun dari N2.

2. Oil Pressure Indicator
Instrumen ini berfungsi mengetahui tekanan oli pada engine pesawat.

3. Oil Temperature Indicator
Instrumen ini berfungsi untuk mengetahui suhu dari oli pada pesawat.

4. Cylinder Head Temperature
Instrumen ini berfungsi untuk mengetahui suhu dari Cylinder Head pada propeller pesawat.

5. Exhaust Gas Temperature
Instrumen ini berfungsi untuk mengetahui suhu dari gas buang engine pesawat.

6. Fuel Pressure Indicator
Instrumen ini berfungsi untuk mengetahui tekanan dari bahan bakar (fuel) pesawat terbang.

7. Fuel Quantity Indicator
Instrumen ini berfungsi untuk mengetahui kapasitas bahan bakar dari pesawat.

8. Fuel Flow Indicator
Instrumen ini berfungsi untuk mengetahui laju atau aliran dari bahan bakar yang menuju engine pesawat.

9. Manifold Pressure Indicator
Instrumen ini berfungsi untuk mengukur tekanan power atau daya engine.

10. Turbine Inlet Temperature
Instrumen ini berfungsi untuk mengetahui suhu dari udara sebelum masuk ke ruang bakar.

11. Air Intake Temperature
Instrumen ini berfungsi untuk mengukur suhu udara.

12. Torque Indicator
Instrumen ini berfungsi untuk mengetahui tenaga dari suatu engine dengan cara mengukur tekanan yang ditimbulkan oleh Torque System.

13. Thurs Indicator
Instrumen ini berfungsi untuk mengukur kekuatan gaya dorong pesawat.

C. Navigation Instruments

1. Magnetic Compass
Instrumen ini berfungsi untuk menunjukkan arah terbang daripada pesawat terhadap kutub magnet bumi.

2. Directional Gyro Indicator
Instrumen ini berfungsi untuk menunjukkan arah seperti halnya dengan Magnetic Compass.

3. Radio Magnetic Indicator
Instrumen ini berfungsi untuk menunjukkan arah berdasarkan frekuensi (VOR) dari sistem radio.

4. Course Indicator
Instrumen ini berfungsi untuk mengetahui posisi pesawat dari tujuan pesawat.

5. Drift Meter
Instrumen ini berfungsi untuk mengetahui penyimpangan arah pesawat.

6. Outside Air Temperature
Instrumen ini berfungsi untuk mengukur suhu luar pesawat.

7. Clock
Instrumen ini berfungsi sebagai penunjuk waktu pada pesawat udara.

D. Auxiliary Instruments

1. Landing Gear Position Indicator
Instrumen ini berfungsi untuk mengetahui posisi landing gear (roda pesawat).

2. Flap Position Indicator
Instrumen ini berfungsi untuk mengetahui posisi flap pesawat.

3. Accelerometer (G meter)
Instrumen ini berfungsi untuk mengukur akselerasi pesawat terhadap gravitasi pada saat pesawat pitch untuk mengendalikan Center of Gravitation.

4. Fatique Meters
Instrumen ini berfungsi untuk mengukur gravitasi terhadap pesawat.

5. Cabin Pressure Indicator
Instrumen ini berfungsi untuk mengukur tekanan yang terdapat di dalam kabin pesawat.

6. Cabin Temperature Indicator
Instrumen ini berfungsi untuk mengukur suhu yang terdapat di dalam kabin pesawat.

7. Hydraulic Pressure Indicator
Instrumen ini berfungsi untuk mengetahui tekanan hidrolik pada pesawat.

8. Suction Gague
Instrumen ini berfungsi untuk menunjukkan pengurangan tekanan udara / menunjukkan suatu tekanan kerendahan dari udara.

9. Angle of Attack Incator
Instrumen ini berfungsi untuk menunjukkan sudut serang besar / rendah pada keadaan terbang normal dan besar sudut serang yang sebenarnya, dengan demikian pilot dapat dengan tepat menerbangkan pesawatnya dengan sudut yang paling baik, kecepatan naik yang paling baik atupun terbang jelajah.

10. Anti Bising Indicator
Instrumen ini berfungsi untuk mengetahui suhu alat pemanas.